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DEFORMATION OF COMPLEX STRUCTURES ON
MANIFOLDS WITH BOUNDARY. I:
THE STABLE CASE-

RICHARD S. HAMILTON -

This is the first of a series of papers generalizing the theory of deformation
of complex structures (which can be found for example in Morrow and Kodaira
{71) to the case of manifolds with boundary. It is necessary to impose some
mild restrictions on the number of negative-eigenvalues of the Levi form on the
boundary in order to guarantee the finite dimensionality of certain cohomology
groups (as in Kohn and Folland [1]); aside from this the results will be com-
pletely general. In this paper we consider only the stable case H(X ; 7 X) = 0,
where 7 X is the holomorphic tangent bundle, so that all deformations are trivial.
In the second paper we discuss in very general terms families of linear non-
coercive boundary value. problems and develop the required estimates and
operators to make the theorems in this paper work. In the third paper we will
discuss the extension of complex structures across the boundary. The fourth
paper will deal with the general case H'(X ; 7 X) = 0 and the construction of
a universal family.

In this paper we prove the following result. Let ¥ be a complex manifold
and X a compact subset whose boundary 9X is smooth. We suppose that the
Levi. form on 36X never has exactly one negative eigenvalue ; that is, either all
are strictly positive or else at least two are strictly negative. This implies that

dim AX; 7X) < o .

Theorem. Suppose H(X ; 9 X) = 0. Then for any complex structure p
on X sufficiently close to the given structure we can find amap f: X — Y close
to the identity so that f is analytic from X with the new structure y to Y with

the given structure. Thus any small deformation of the complex structure on
X can be induced by a small motion of X in Y.

To be precise; an almost complex structure g on X is represented by a vector
valued one-form g% which is a section of the bundle L(7 X, 7 X). In the above
theorem y and f are C~ (smooth) functions on X, up to and including 6X. A
complex structure on X means an integrable almost complex structure, one
with dp — ¥u, p] = 0. The conclusion holds for all x sufficiently close to 0;
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that is, for all ¢ in a neighborhood | ||¢+x, < ¢ in the topology of C=(X). Thus
it is only necessary that some finite number of derivatives be small. That f is
analytic on X with the structure y means that f satisfies the Cauchy-Riemann
equation 3f e df = p. Hence proving the theorem amounts to solving a non-
linear over-determined subelliptic boundary value problem. This is done using
a generalization of the Nash-Moser inverse function theorem [2]. The work
involved is to prove estimates on how the solution of the d,-Neumann problem
depends on the complex structure .

We mention two applications. The first is when Y is a Stein manifold and
90X is strictly pseudo-convex. In this case HY(X ; 7 X) = 0 automatically and
the theorem applies. This case was considered previously in [3]. The second is
when ¥ = C” and X is the region 1 < |z| < 2 between two balls. If n > 3
then the Levi form has n — 1 > 2 strictly negative eigenvalues on the inner
boundary and all strictly positive on the outer boundary. Moreover H(X ; 7 X)
= 0, 'so again the theorem applies. Hence any small deformation of the com-
plex structure cannot grow an isolated singularity inside. The situation is quite
different in C?; see Rossi [8].

We wish especially to thank Masatake Kuranishi for his invaluable assistance
in the preparation of this series of papers. His article [6], dealing with the
parallel case of deformation of complex structures on the boundary, has provided
a model for our case. We have borrowed several important ideas from that
paper ; in particular, the treatment of nonzero cohomology groups using spectral
theory, and the use of approximate splittings of cohomology sequences in con-
nection with the Nash-Moser inverse function theorem. We also wish to thank
J.J. Kohn, who suggested that the results in [3] for strictly pseudoconvex
domains extend to the case of sufficiently many negative eigenvalues of the
Levi form.

1. Deformation of complex structures

1.1. Complex structures on vector spaces. We begin with some linear
algebra. Let E be a real vector space of finite dimension. Write CE = C®z E

for the complexification of E. There is a natural real-linear inclusion E s CE
given by v — 1 ® v. There is also a natural conjugation CE — CE given by
c® v = ¢ ® v. The image j(E) C CE is the subspace RE of real vectors, those
which are self-conjugate.

If E also has the structure of a complex vector space, there is a natural
multiplication 7: CE — E given by m(c ® v) = cv. The kernel is a complex-
linear subspace which we call &, for reasons which will become clear. There
-is a natural exact sequence

0 > & > CE > E >0 .
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Since the composmon E-1scE "5 Eisthe identity, & is complementary
to RE.

Conversely, suppose E is a real vector space, and we are given a complex
linear subspace & of CE complementary to- RE. Then there exists a unique
complex structure on E such that & is the kernel of the multiplication m; CE
— E. To show the uniqueness, observe that if & = ker m then the map

E—1>CE-L>CE|®
is a complex linear isomorphism, since 1 ® iv — i ® v ¢ & = ker m for any
v € E. To show the existence for a given &, we give E the complex structure
which makes the real-linear isomorphism #j a complex-linear isomorphism.
This means that for each v ¢ E we define iv to be the unique element with
1®iv — i ®v e £. Then these elements span both & and kerm, so & = kerm
for this complex structure.

The space S(E) of complex structures on E can therefore be identified with
an open subset of a Grassmannian manifold. It is convenient to have natural
local coordinates on S(E) in a neighborhood if a reference point & ¢ S(E). For
this it is necessary to choose a complex-linear complementary subspace.
Fortunately there is a natural way to do this. Namely, if & ¢ S(E) then the
conjugate of & is a complex linear subspace & of CE complementary to &, and
we have a direct sum decomposition

CE=63¢.

Note that there is a natural complex-linear isomorphism of & to E given by

&—>CE-ZSE .

Other authors sometimes write E’ and E” instead of & and &. Suppose then

that & e S(E) is a reference structure. There is a local one-to-one correspondence

between complex structures £, near &€ and small complex-linear maps
p:&— & givenby &, ={v —w:ved}.

If 7 and = are the projections of CE onto & and &, then 2 is determined by
the commutative diagram

é_&#
_/\
F g

since #: &, — & is an isomorphism when &, is close to @” The diagram com-
mutes since for v — pv e &,
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(v — ) = pv = —a(v + wv) .

Thus we have constructed natural local coordinates on the Grassmannian
manifold S(E) with values in the vector space L(Z, &).

1.2. Almost complex structures on manifolds. All the preceeding gener-
alizes \immediately to manifolds. If X is a manifold with tangent bundle 7X
we can form the complexified tangent bundle C7X = C &z TX, and a com-
plex structure on each fibre defines a subbundle 77X = Kerm: CTX - TX
and a direct sum decomposition CTX = X @ X where J X is the conju-
gate of 7 X. An almost complex structure on X is defined as a smooth com-
plex-linear subbundle 7 X of CTX complementary to the real subbundle RTX.
By the previous argument an almost complex structure on X can be identified
with a smooth section of the fibre bundle S(7X) obtained by applying the
functor S to each fibre. If 7X ¢ S(T'X) is a reference structure, we can choose
local coordinates on S(TX) with values in the vector bundle 1(7 X, 7 X).
Hence an almost complex structure u close to the reference structure cor-
responds to a small smooth section x of the vector bundle L(7 X, 7 X).

If 2!, ..-,z" are complex coordinates on X, the bundles .7 X and 7 X are
spanned by the 3/0z% and 3/6Z* respectively. An almost complex structure close
to it is represented by a tensor p = p dZ’ ® 8/0z%, and 7 X, is spanned by
0/0zf 4 13(0/9z%).

1.3. The integrability condition. Let 4 be an almost complex structure
corresponding to the subbundle 7 X,. We say that g is integrable if 77X, is
integrable. This means that for any two vector fields v and w with values in
7 X, the Lie bracket [v, w] again has values in Z.X,. Note that the Lie bracket
is defined for complex valued vector fields, which are just sections of CTX. In
general there will be an obstruction J(z) which is a smooth section of the bundle
AT X,, T X,) of alternating 2-forms on 7 X, with values in 7 X, such that
if ¥ and w are smooth sections of X, then

[v,w] = (@, w) mod TX, .

Note that although the Lie bracket is an operator of degree 1, the error
J()(v, w) is an operator of degree 0, i.e., a pointwise multiplication. We can
regard J as a partial differential operator of degree 1 as follows. S(X) is a fibre
bundle over X, and 47 X,, 7 X,) is a vector bundle over S(X) whose fibre
at p(x) is (T X ,iny, T X)) If p is a section of S(X), then J(x) is a section
of A(TX,, T X, lying over p.

We can compute J(y) explicitly in terms of a ccomplex reference structure
z', - -+, z* It is more convenient to compute an equivalent tensor Q(y) which
is a section of A7 X, 7 X) defined by

J(/")(v, W) - TL'FQ(/J)(TT’U', 7TW) s
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where 7: X, — X and =,: 7X — J X, are isomorphisms induced by the
projections

TX®ITX>TX, IX,OIX, >TX,.

Suppose 7v = p = p*(0/0Z*) and 7w = g = g*(¢/9Z%). Then

8 0 ) ( 0 s 0 )
v = — ], = q@{ —— -],
b ( oz St 9z? w= oz T 97

and Q(u)(p, q) is determined by
O(w(p, 9 =lv,wl modJX, .
Now clearly

[v,w] = p"CI’[maw + /15--~—an,*? -+ /zi-—gé--

bl
B — @ 7, f A
el ozf = o7 9z ] prqQue; 9z

where

4 4

— Op _ Ope ﬁﬁ# aﬂ«
Q(w:, 97" pos + ta P — - 2

Thus Q(p) is a nonlinear partial differential operator of degree 1. If AX(T X, .7 X)
denotes p-linear alternating forms on 7 X with values in 9 X, then 4 is a sec-
tionof AT X, 9 X) = L(TX, 7 X)and Q(u) is a section of AT X, 7 X), so

Q: MNITX, fX)eAZ(fX,FX) ,

and g is integrable if and only if O(p) = O.

If the almost complex structure g is induced by a complex coordlnate system
z', -+ -, z*, then clearly p is integrable since [0/8z%,3/0Z°] = 0. The classical
theorem of Newlander and Nirenberg asserts the converse ; if p is an integrable
almost complex structure then g is induced locally by a complex coordinate
system. Thus an integrable almost complex manifold is a complex manifold, at
least in the interior; this argument breaks down at the boundary.

1.4. The 5, complex. Let X be a complex manifold. A vector valued p-
form is a section ¢ ¢ C=(X ; AX(T X, X)) = 2%(X) given locally by

0z°

where A = (a;, - - -, &) is a multi-index, and dZ*4 = dz** A\ --- A di°s, and
the summation ranges over all strictly increasing indices A. We define 5 to
be +1 if A is a permutation of B of sign +1, and define ¢3 to be O otherwise.
The complex
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co s AP (X) N 2(X) AN X)) —> .
is defined locally by thé formula
0p% = € ago /0z*

with summation over 3 and all strictly increasing B. It is easy to check that
this definition is invariant under a complex-analytic change of coordinates, and
that 60 = 0.

There is also a Lie bracket operation on the AP(X) which agrees with the
ordinary Lie bracket on 2°(X) = C~(X; 9 X) and acts as a combination Lie
bracket and wedge product on higher order forms. If

¢ =¢5d7' ®

2 v=vsa
we define _
LOVE . Ok ) a2
R ZrA 7 ® o
Lo, 1 = ( oz VE 3z

We can then v_erify the following rules (see Morrow and Kodaira [7, p. 152]).
Let p = deg ¢, ¢ = deg+, r = deg . Then

@l = —(=1D)Pp, ],
(=1 o, [y, 211 + (= DPUY, [z, 011 + (= 1)z, (o, %11 =0 .
The first is the antisymmetry relation, the second is the formula for the deriva-

tive-of a product, and the third is Jacobi’s identity. Using these formulas we
can write the integrability condition as

Q) = op — 3lp, o .
Suppose now that y is a complex structure, so that Q(x) = 0. Then writing '
2(X) = C>(X; 4/(TX,, 7 X)) we will have a complex d;,; which is just ¢ in
" the structure g

s EX) ﬂmnX) O p(X) s -

and again &,,9;,; = 0.
There is another complex associated to x for any almost complex structure
close to the reference structure. Namely, we define

e 21’“(X) O (X)X —> -
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by the formula
| Oup = 0p — [ o] .
It is an easy consequence of the re_lationé for the Lie bracket that
0,00 + [Q(w, ] =0,

where Q(¢) = dp — lp, 1] is the integrability condition. Thus 5,5, = 0 if and
only if Q(y) = 0. We can also write the integrability condition as Q(p) = 0l
There is a simple relation between 5, and 3;,,. Recall that we have isomorphisms

7 TX, >CIX =TX®TX > TX,
7, TX >CTX =TX,DTX, - TX, .

These induce an isomorphism
Az, m): AN TX, TX)—> MINITX,,TX,) .
Write ¢, = C~(X ; 47(z, 7_1';,)) for the.induced isomorphismb
c,: AP(X) — 22(X) .

Then the relation between Q(y) and J(y) is expressed by J(x) = ¢,Q(w).
Theorem 1. There is a commutative diagram c,0, = 6:,1C,
(X)) ——> RP‘I(X)
Cu ’c#

n(x) 5 ) ﬂ**(X)

for every complex structure p.
1.5. ' Local coordinates.

Proof. Let 2!, - -+, 2" be complex coordinates in the referen_ce structure,
and w', - - -, w® complex coordinates in the new structure g. Then
ow* ow
AT _'8_ e _ _.p‘s
07 ozr "

It follows that

ow" { az__‘”v agr" } _ ow"
ow’ " ow 0z°

When p is small, gw*/0z” will be invertible so we must have
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9z 07*
il 7 =0.
o
Now

3 0zf @ 377 8
owr  ow oz | ow oz

50 by the previous relation

az'azﬂ{a_'ya}
ow  aw Loz o’

_which is the fundamental relation in 7X e
Next observe that by definition

_ 9 _ 07° @ ] ow? 9
n— = — — , ﬂ# = .
ow" aw" 9z* 9z 9z« . aw?
Suppose ¢ = ¢,o. Write
g0=g0‘;d2"®—-a ., P =i dw ® 9
oz= ' ow?
IfA=(a, - a)and B= (8, --,B,), we put
aZA az"(al) azﬂ(ﬂp) )
= —r e
ow? ; = ow#h ower
Then locally ¢, is expressed by
: z4  ow’
B 9L W .
Vs = Gap o

By definition
Gt = e dvi/ow

which in turn is a sum of three terms. The first of these is

5024 OwF Bgn _ L 07' 074 ow’ {a¢; iy a¢;}
CowE oz= owr  C ow ow® oz \ oz’ oz )’
_using the formula for 3/0w". Next note that
a_owt _ a'zf{ o ., @ }awﬂ
o oz ow Loz e ) o
_ 82'.’[ ] {awﬂ _ ,,awﬂ}+ opl awﬁ]= 97" ow? oy}
aw L az= \ 8z "oz 9z° 9z ow 8z 8zc
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since the term in braces is zero. Therefore the second term is

502 924 aw? oy

oW awP oz ozt

For the third term observe that

a _@4_ = EA 78 azR ———aZZP

owr ow? WS owow
Hence the third term is
.5 028 0°Z°  owf .g 0°3° oi% aw®
EE'BE':REBS 0y = € 5 € 0y = 0,

ows owow oz awowe T owS oz

because ¢S is antisymmetric.in y and ¢, while 3*2°/0w0w* is symmetric, and
the summation convention applies. Also we observe that

5737,8_20 ?zA = 50‘4;,,82?4

o oW P gwe

Hence we have

_ 5D A3 « a «
Orl = (14.92° qﬁ"iﬁ_{_?%" — ﬂv._a@i 1 R/Z8 v} ,

Powe oz Vo oz | ot
A 32” ow? < a
O = P —E}'E;{USD — e 0l}s -

Therefore 9,1 = ¢ {op — [g, ¢l} if ¥ = ¢,». This proves the theorem.

1.6. Induced complex structures. Suppose now that ¥ is a complex
manifold and X is a compact subset with smooth boundary 6X. If f: X - Y
is close to the identity we define the induced structure

i = P(f) = of 1o 0f ,

or equivalently 6f = 9f o u. Here df : TX — T'Y has complexification Cdf: CTX
— CTY, and under the direct sum decompositions CTX = X ® 77X and
CTY = 7Y @ JY the map is represented by a matrix .

- 3.

where 9f: X - 7Y and of: X - JY. Thus p =0ftedf: TX - TX
is a complex structure. In local coordinates ‘



10 _ ~ RICHARD S. HAMILTON

o _ o,

277 oz Hs

If we write & (X, Y) for the manifold of maps of X into Y, then M is a non-
linear partial differential operator of degree 1:

M: F(X,Y) X)) .

We wish to compute the derivative DM(f)g. Here g e T,%#(X,Y) is an in-
finitesimal variation in the map f, which can be regarded as a section of the
pull-back bundle f*7°Y. Suppose DM(f)g = v. Then a variation of g in f
must accompany a variation of v in x. Applying this in local coordinates to the
equation ' ' '

of _ of
az* oz M
we musf have
og* _ ag" of*
o7~ ar T ar

Define y e. 1°(X) by the equation

_ g =dfoy,
which in local coordinates is
. O
I

If f is near the identity, then 3f*/dz’ is invertible so g determines y. We have

af oy e, o e . f . . o
— A P A ¥ + YA .
0 o7 | azer * T oz o T grap P T ot
"However
ofF _ of
9zf oz ¢

so differentiating with respect to z’
a2fa — azfa
07°9z° 9770z

”af" o |

ot T 07" - 9z°

If we interchange 7 and ¢ in some terms, we have
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of [ oy oy ops }__ ofc
0z° {azﬂ o #+ 0z vy 0z’ Ve -

Since 9f*/0z’ is invertible for f near the identity, we have

60 60 aﬂ
A

But this is just the local expression for

o =0r—lmxl=v.
Hence the derivative of M is given by

DM(f)g = 3,(0f '-8) .

The manifold of maps # (X, Y) is modeled on the vector space 1°(X) near
the identity. To accomplish this we choose a spray ¢: 7 X — Y and define
the local coordinate chart

§:2°(X) - F(X,Y)
by composition
Slp) =g0p = f.
In local coordinates
14(2%) = (2%, ¢'(z)) ,

where the ¢%(z%, v7) are functions of variables z',--.,z” on X and 2%, - .., v™
defining the tangent directions, i.e., ¥ = dz’. We can make o(z,0) = z,
(80°/0v7)(z, 0) = 67 and (90°/377)(z, 0) = O by a suitable choice of ¢. The map
S has a derivative

DS(p)y = g
given in local coordinates. by |

do*®

o o) .

=

do* .
™ (z, o) +

The composition P = MS is a nonlinear partial differential operator of degree 1:
P: 2°(X) - 2'(X) .

Its derivative is giﬁren by the Chain Rule
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DP(¢)y = DM(ADS(pWr = v .

Recall that '
e=L 0, Feehe@),
0z .
af do® do® de’ do® oF
= z, (z, (z, p)
P PRI ol i 57

Therefore x,l» and y are related by the equation

_da* ., 0o 7, {30"‘ do*. By’ | 0O¢" 695”} 0
oo VT Y P S e T S A

If ¢ is close to zero, these eqﬁations can be solved either way. Let us write
X=ayp.
‘Then “a” is an operator '
a:(UC2°X) X 2°(X) - 2°(X) ,
which is nonlinear of degree 1 in ¢ and linear of degree O in +-. Moreover for
small ¢ the linear map q, is invertible, and the solution
o= day
defines an operator
at: (UZS 2°(X)) X 2°(X) — 2°(X) ,
which is -also nonlinear of degree 1 in ¢ and linear of degree 0 in y. We now
have the formula '
DP(go)«[/' = S”L_Z,pi[r if g = P(go) .
1.7. The nonlinear complex. The operators P and Q define a nonlinear
complex :
P 0 :
U C 2°(X) —> (X)) —> 2(X)

where P(p) = MS(p) and Q(y) = d,,p.. Since the complex structure on Y is
integrable and P(p) is its pull-back under the map f = S(p), it follows that
¢ = P(p) is always integrable so Q(x) = 0. Thus QP(p) = 0 for all . We wish
to assert that this nonlinear complex is exact.

Theorem 2. If 4 ¢ 2\(X) is sufficiently small and Q(¢) = 0, then there exists
a ¢ € A°(X) with P(p) = p. :
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Corollary. There exists an f = S(p) € F(X, Y) with M(f) = u. Thus every
integrable almost complex structure y on X close enough to the given structure
can be obtained by a small wiggle fof X in Y,

This is the main result of this paper.

1.8. The Nash-Moser theorem. We shall prove Theorem 2 using a ver-
sion of the Nash-Moser inverse function theorem which is proved in § 2. We
state the theorem briefly here. A grading on a Fréchet space E is an increasing,
sequence of norms | |, (n =0,1,2,+-.) which define the topology. Two
gradings are said to be equivalent if for some r

L R<Cl By | B<CH s

A graded Fréchet space is defined as a Fréchet space with an equivalence class.
of gradings. We also assume the existence of smoothing operators. If X is a
compact manifold with boundary and B is a vector bundle over X, then
C>(X; B) is a graded Fréchet space with smoothing operators. We say that
a map

P:UCE-VCF

is tame if every x, e U has a neighborhood on which for some number r we
have estimates

1P < CUx sy + 1)«

We say P is smooth if all its derivatives exist, and we call P a smooth tame
map if P and all its derivatives are tame. Every nonlinear differential operator

P:UCC(X;B)—V CC~(X;C)

is a smooth tame map. Also the composition of two smooth tame maps is a
smooth tame map.

The Nash-Moser inverse function theorem says the following. Suppose 0 ¢ U
and

P.UCE—-VCF
is a smooth tame map with P(0) = 0 whose derivative
DP:(UCE) ><E—>F

is invertible everywhere in' U, and suppose also that the family of i inverses VP
defined by the relation

VP(Hh = g & DP(f)g = h

is a smooth tame map
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VP:(UCE)xF—E.

Then for possibly smaller neighborhoods U’ -and V”’ of the origin, P: U' — V”’
is invertible and the inverse P~!: V/ — U’ is also a smooth tame map.

We shall use a generalization which is the Nash-Moser theorem for nonlinear
‘exact sequences. Suppose E, F and G are graded Fréchet spaces (with smooth-
ing operators as always) and U, V and W are neighborhoods of the origin, and
. we have a nonlinear complex

P
vcEtsvecr L weao,

where P and @ are smooth tame maps with QP(f) = 0O for all f ¢ U. We wish
to find a condition under which the complex is exact, i.e., Im P = Ker Q.
We assume that for each f e U

Im DP(f) = Ker DO(Pf) ,

so that the linearized complex is exact everywhere in U. We assume moreover
that we can find a smooth tame splitting.
Theorem 3. Suppose there exist smooth tame maps

VP:(UCE)XF—E, VQ:(UCE)xXG—F,

such that VP(Hh and VO(Hk are linear in h and k, and split the linearized
complex in the sense that

DP(OVP(Hh + VONDQPHh = h .

Then the nonlinear complex is exact at 0, i.e., we can find a possibly smaller
neighborhood V'’ of the origin such that if y ¢ V' and Q(y) = O theny = P(x)
for some x ¢ U. Moreover we can find a smooth tame map

_ S:VVCF-UCE
such that if ye V’/ tﬁen
PSy =y whenever Qy = 0 .,

In order to apply the Nash-Moser theorem it is necessary to construct the
smooth tame splitting maps. This is done in § 5, where we prove their existence
under very general conditions. Suppose that P and Q are nonlinear partial dif-
ferential operators of degree 1 on a compact manifold with boundary. If we -
choose families of hermitian metrics (which may depend on f) we can form
the adjoint operator D*P(f)h dual to DP(f)g. There will also be a boundary
condition d*p(f)h such that '
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(DP(Pg, 1y + (g, D*P(Hh) = 0

for all g if d*p(fih = 0. Suppose that for each f ¢ U the derivatives DP(f)g
and DQ(Pf)h form an elliptic complex. The important fact to verify is that we
have a uniform persuasive (or subelliptic) estimate ; for all f e U and all & with
d*p(f)h = 0 on X we have

LX |hfdS < L ID*P(PhAV + L{ 1bQ(éf)h|2dV + L \hfdv |

where “<” means *“< a constant times”. This guarantees that
Ker DO(Pf)/Im DP(f)

is finite dimensional. Suppose in addition that Im DP(0) = Ker DQ(0). Then
Im DP(f) = Ker DQ(Pf) for all f in a neighborhood of 0, and there exist
smooth tame splitting maps VP and VQ as required. Consequently the theorem
applies.

The philosophy behind this method is clear. In dealing with coercive pro-
blems it is sufficient that the derivative at the origin be coercive, for any problem
close enough to a coercive problem is again coercive. For noncoercive problems
it is necessary to assume that all the derivatives remain uniformly within some-
tractable class of problems. From there on, invertibility or exactness at the
origin will imply the same in a neighborhood of the origin, and we can crank
out the tame estimates ne¢ded for the Nash-Moser theorem.

In applying this theorem to the present problem it is somewhat more aesthetic
to work with the ¢, complex than with the DP — DQ complex.. They are es-
sentially the same smce :

- DPp)y = d,a,% ,  DQP)y =0,y ,

the only difference being the operator a,. But g, is invertible with a smooth
tame inverse a;*; in fact it acts p01ntw1se on . Therefore if K, and L, are
a smooth tame splitting for the 6, complex so that

('_?”K” 4+ Lﬁ# =1,

then a,;'Kp, and Lp, are a smooth tame splitting for the DP - DQ complex,
so that

‘DP(p)a;'Kp, + Lp DQ(Pp) = I.

We preceed to verify the uniform persuasive estimate for the g, complex ; this
is known classically as Morrey’s estimate.
1.9. The Levi form. Let Y be a complex mamfold and X a compact
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subset with smooth boundary 9X. The complex structure on X induces a
decomposition

CTX =9XDIX

as before. At the boundary there is a more refined structure. We define the
distinguished tangent space

29X =X N CTX
and its conjugate
9X =X N CTéX .

Then 2X has complex codimension 1 in X, and 2X @ ZX has complex
codimension 1 in CT9X. Now 2X is an integrable subbundle of CT5X in the
sense that the Lie bracket of two vector fields in 2X lies again in £2X, and so
is 9X, but the direct sum 2X @ 2X is not in general. The obstruction to in-
tegrability is the Levi Form

A: 9X X §X — CToX|9X ® 7X

defined by the relation that if v is a vector field in 2X and W a vector field in
%X then

A, W) = i[v, w] mod 2X @ X ,

where [v, W] is the Lie bracket. The space CToX/2X @ ZX is equipped with
a natural conjugation operation, and the Levi form is hermitian-symmetric

Aw, 9) = A(v, W) .

It therefore makes sense to speak of the “number of positive, zero and nega-
tive eigenvalues” of / as true invariants, even though the actual value of the
eigenvalues would depend on the choice of a basis in 7 X.

Suppose that L, .-+, L,_,,L, form a basis locally for the vector fields in
JX with L, ---,L,_, forming a basis for 2X. Then we can write

[LL, Z;] = aijk - d’;lik .

Suppose that we also choose L, so thati(L, — L,) ¢ ToX. Since [L,, L,] e CToX
for [,j <n, we must have a¥; = @, and i[L,, L,] = a},i(L, — L,), mod 2X
@ ZX for I, j < n. Therefore the hermitian-symmetric matrix {a7;: [, j < n}
represents the Levi form A in the basis L, ---,L,_,,L,.

Let 2%, - -+, z" be local coordinates. We introduce the notation that a = b
means that a = b at the origin. By a proper choice of coordinates we can make
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ToX 2 (=0},
where z* = x" + iy*. Then we can choose

]
L, =vf—~_ o

H

so that v} =§¢; thus L, = 3/dz*. In this case i(L, — L,) = 8/dy" ¢ ToX. Let

p be a smooth real valued function with p = 0 on 0X and ap/az" = 1. Since
L, is parallel to X for I-<n, we have

_prde g
Llp_vfazk =0 on X .

Then if also j < n we have

E)Zp ot o
e 9P 4 9% 2
" oz¥oz! a7

Thus
N d . 0
l[LLaLj] = I:'vf Py ’vja—Z"T]
Lo d o @ )
= v —— P e
( Yoz oz 7™ ozr +
azp - ( 3 3 )
= VP ——Z )+
oz%z! 7 \azr 8z
é azp = a
ozloz! oy™

Therefore in local coordinates with 70X = {x* = 0} if p is a real function with

o

p = 0 on X and dp/9z" = 1 then the Levi form at 0 is given by the matrix

. .
e IS

1.10.  Adjoint operators. We now choose a hermitian metric A = {, > on
X.LetL,;.--,L, ,,L, be a basis for X as before, sothat L,, ---,L,,_, are
a basis for X = 7 X N CToX. Let o', - - -, »® be the dual basis of forms.
Then the local representatives of h are the matrices h,, = (L,, L,> and h’ =
{@*, @y which are inverse to each other. If 4 is a multl—lndex A=, - -,a,),
we write

wA:wal/\waz/\.../\waq‘
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For two multi-indices A and B, we let ég = +1 if B is a permutation of 4-
with sign +1, and otherwise e = 0. In particular ¢ = 1 if a = b, and & = 0
if‘a +#+ b. Then

LA a
ep = 20 (= 1)"e¥tyyentyy <+ - Etog

r

where the sum ranges over all permutations z, and (— 1)~ is the sign of z. By
analogy let

B Z (— l)zhalz(h)hazz(bz) e _haqz(bq) .
T

If we choose coordinates with 43% = ¢ at the origin, then A48 2 :4 at the

origin.
Any vector valued g-form ¢ e 2%(X), which is a section of the bundle
AT X, 7 X), can be written locally as

o=ga*®L,. -

Here and later we adopt the convention that summation is only over strictly
increasing multi-indices. There is an induced Hermitian metric on the bundle
AT X, T X) given by

Lo > = @i, B4

(Note that 4 is a conjugate index so it comes second in A%4.) If dV is the
volume element arising from the hermitian metric, then

dV =deth = hyyo' A oV,

and there is an inner product on A%(X) given by

(o) = [[_ottighpotay .
The operator 3;,. is given in local coordinates as
Oupls = &' (Legls — fliLaglt) + -
where the dots denote terms of degree zero. This leads us to define
Lt =L — plL,,
which we observe is a vector field in 7X,. Then
8,0 = <fLigh + -

Next we wish to calculate the adjoint 7. We let the hermitian metric /, depend
smoothly on. #. Then we have
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@upr ), = [[ - Tiheeze av,
- J L e Legh - THhEhEA AV, + -
= [[ Leot-ctohctimmzeav, + -

since e’hB4 = 2,h2h?°. Now we can move L¢ to the other side provided the
boundary integral vanishes. Let p be any real function with p = 0 on 90X but
nonzero gradient; say L,p # 0. Then the direction of the vector Lp is in-
dependent of the choice of p, and the boundary integral vanishes if and only if

Lio- k- elph®PihihP¢ = 0
on dX. We introduce the dual operators
L¢ = hL:

where L# is the conjugate of Lt. We also let 12 = L%. Then the boundary
integral vanishes for all ¢ if and only if

espPit =0 on 9X .

Write v, = 12L,. Then v,-is a vector field in 7X. Also if we let n*y} =
expriv?, then n* is the contraction map on v, :

nk: AT X, TX) - A(TX, TX),
nr\!’(,vb ] ’vq) = 1#(1)#, Vs v "vq) .

Suppose #¥y» = 0 on dX. Then moving L¢ to the other side in the previous
integral we have

@upr 90 = [[_ob-taLiFihipzeav, + -
= (g 330, »
where
Oy = LoLivh + -

If we are careful we can arrange things so that the boundary condition
n¥y = 0 is independent of . For this condition does not depend upon the
actual choice of the vector v, but only upon its direction. Therefore we must
make the direction of v, independent of x. Recall that

vi = Lip = hiLip .

#
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When p = 0 we have Lo = 0 for ¢ <n, since L, ---,L,_, are parallel to
the boundary. Moreover we can choose L, to be orthogonal to L, ---,L,_,
in the metric 2 = A, for g = 0. Then 4"? = O ford < n, sov? = Oford <n,
andy = L,. Let L*p = L¥p-°; thus L*p is a covector field in 7 *X. We now
choose the hermitian metric 4, to vary smoothly with y in such a way that the
direction of the covector L#p is always dual to the direction of L,. Thus we
want

v,L,y, = 0& Lro(w) =0

for all » ¢ 7X. Since the direction of L, is that orthogonal to 2X in the
metric A,, this is the same as requiring

f:Liw) =0} |, {w:w_|,2X}.

It is clear that this requirement can be fulfilled even globally, with &, depend-
ing smoothly upon g. In this case we have

vi=Lip=0 ford<nm.

]

This implies that the operators L% are all parallel to the boundary for d < n.
The boundary condition #*y, = 0 is independent of y. Since

n*\p’(’vls s ',"Uq) = \b’(y, (2T vq) s

we see that n* defines a complex

% *
D> APNTX, TX) > ANTX, TX) > A" TX, TX) —> - -
which is exact, 1.e., Im n* = Ker n*. Write
N1 =Kern* C AT X,T X) .

Then 477 is a vector subbundle and n*y = 0 & + € A% Also n*: AT X, T X)
— A1 is a surjective bundle morphism. We can consider #*y- as having its
values in 471 C AT X, 9 X). In local coordinates 1? = O for d < n.
Therefore n*y = 0 & 4, = 0 whenever n ¢ 4.

1.11. The uniform Morrey estimate. This estimate was first proved for
the & complex by Morrey in the pseudoconvex case and by Hérmander in the
general case. We show that the estimate holds for the complex d, uniformly
in p. This involves no new techniques, only a casual glance at the effect of p.
We follow more or less the argument of Kohn and Folland [1]. In particular
we adopt their convention that

“f(x) < g(x)” means “3C vx f(x) < Cg(x)” .
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Let| | and | | denote the L, norm on X and 3X respectively. We say 0X
satisfies condition Z(g) if the Levi form A never has g negative eigenvalues;
i.e., at every point A either has at least n — g strictly positive or else at least
g + 1 strictly negative eigenvalues.

Uniform Morrey estimate.  Suppose 90X satisfies condition Z(q). Then for
all ¢ € 24X) and all p in a neighborhood of zero

lel Sl + 195l + llell  when n*o =0

with a constant independent of ¢ and p.

Proof. 1t is sufficient to prove the estimate for forms with support in a
single coordinate chart, since we can patch together with a partition of unity.
Indeed if } ¢} = 1, then we will have

el = Tlewl S D lo00l + |5Fapl + llolP
_ < 10,01 + okl + lel? .
We choose as before a basis L, ---,L,_,,L, for X with L, ---,L,_, a

‘basis for 2X. Moreover we suppose for simplicity that the L, are orthonormal
in the metric A, for ¢ = 0, and that the matrix for the Levi form with respect

tothebasisL,, - - -, L,_,, L, is diagonal at the origin of the coordinate system.
From the previous section we have the formulas '
3’,“?,14 = effi{.‘(pé + e, a*‘Pf) = EdnLd‘!’B + -

where the dots denote terms of degree zero. Therefore
[[ et Lot Lag-hepzs av, < o0 + ol -
We have the identity
&P hl* = hi°hi{hs hPC — eeEe PehEE} .

(In order_to verify it, imaginé a new coordinate system with 4?7 = &..) Since
hj°L¢ = L and h¥L% = L:, we can rewrite the previous integral as a difference
of two integrals

” Ligt-Ligh-hihyhi® av, _” elpe0re Ligh-Liph-hi;HEE AV,

The first of these may be appropriately called || L,p|?. For we have 1n that
case the relation

ILelr < T ILet )l SALuolf

with a sum over all 1, l,'C. We return to this integral later. Meanwhile we
consider the other. We claim we can always move the operator L? from &}, onto
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Lot Az without 1ntroducmg any boundary integrals when n*p = 0. If ¢ < n then
Le is parallel to the boundary, and we can do it. When ¢ = n we have ne C
so ¢4 = 0 on 80X by the boundary condition n*p = 0. If f <n then L7 is
parallel to the boundary so L/¢L = 0 on X, which would kill any boundary
integral. If f = n then ne D and @} = O on X, which would do the same.
Thus we never get any boundary integrals. In integrating by parts we will
produce some lower order terms from L¢ falling on the metric ; however these
are all clearly bounded < ||L,p|-|l¢|l. The new integral is

” g2y LLLI b - ohht,h% dV
pe

Using the commutator we write
LeLf = LILe + [Le, LI] .

This produces two integrals. The first is
”x Cpelp LILigh - GhhtshEE AV, .

Now we claim we can transfer L] back from L:¢} onto &% without introducing
any boundary integrals. For if f < n then L! is parallel to the boundary, and
if f=mn then fe D and @} = O on the boundary Again we will have some
integrals of lower order of the form

JJX elpelplih - - - dV, .

We claim that in these integrals we can always move L to the other side. For
if ¢ <n then L¢ is parallel to the boundary, and if ¢ = n then ne C and
¢4 = 0 on the boundary. Therefore the lower order integrals are < ||L,o|-||¢||
+ ||e]l?. Then, since .

5,; $0E = EeEL 900 + -

we can bound the main integral

[[ sosetelagh- Ligihz= av, < 1agolt + ol
We then still have the integral from the commutator. We can write
(L, L{] = aifLs — afels .

The integrals involving L¢ will all be bounded < ||L,¢||-||¢||. For the integrals
with L¢, when g < n we can move this operator to the other side as before
and bound the term < || Lo|-lloll + @], We are left with
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JI eEsfpaeprgoc <pth‘thE dav,
X

Now if ¢ = n then n ¢ C and ¢k = 0 on the boundary, and we can move L
to the other side and bound the term as above ; similarly if f = n then ne D
and ¢} = O on the boundary. Hence we only need to consider those terms
a’l with e, f < n. Now when y4 = 0, h*/ = ¢, and L¢ = L,. Therefore for z = 0
the matrix a% is just the matrix of the Levi form A, as we showed in the sec-
tion on the Levi form. Moveover at the origin this matrix is diagonal. When
we move the operator L7 to the other side we produce a boundary integral

2 J. elpe2paiiLrp, ok ghhi;hEE dS,
ax

e, f<n

where p,, is the distance to the boundary in the metric /,, and dS, is the induced '
volume on the boundary. In particular at = 0 we have L?p = 1. To sum-
marize the situation so far, we have shown

J J Liok-Legh - hy bt h” dV,

+ 3 j chachsaiiLin, pLoHH " S,
3X

e, f<n

< .0l + 155l + I Lel-lel + lolf .

‘Now for any ¢ > 0 we can bound
= 7 1
Lol lloll < eliLuplf + :Hsall2 :

Moreover if we choose the neighborhood of the origin on X and the neigh-
borhood U of O for g to be sufficiently small, then the errors introduced by
replacing 4%/ and a%L"p, by their values at the origin for ¢ = 0 will be bounded
S el|Lpl? + ¢|oP. For £ = 0 and at the origin we have A = ¢! while a?/L"p,
becomes a diagonal matrix of eigenvalues A°. Thus

5 ([ Tetngav + 5 {50} [ ptas
e,lC’ X

eeC

- - _ = 1
< l19u01F + llokel? + EIILMPIIZ +elelf + —lol" -

Now with any term Ltpl we can argue as follows (with no summation); if
e<n
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If L; 906' Lﬂ@CdV = _II L #SDC @lch .
- —HX[L Leloh- 3% dV +ﬂ Legh-Ligh dv
> [ roghav

ox

with errors < || Lol + elol* + l|lo|/e. We apply this argument only for
those eigenvalues 4¢° < 0. For the others we use

H Legh-LeghdV >0 .

Also we must hold out ¢||L,p|F to cancel the term on the right. This however
will produce an error bounded by ¢|¢[’ in the result. Therefore we have

L{zre—gaf estas

1, leeC neg

A 2 1
L el + llgiel + elef + ?Ilsall2 -

Here we let 3., (resp. 2] ,.,) denote the sum only over negative (resp. posi-
tive) eigenvalues. Now
DEA-Dr=Tr-TF.

eeC neg neg
eEC e¢C

Thus

s{nr-xpr| eetas
¢ Lpos neg 3x
eeC egC

_ = 1
< Mol + llokel? + elof + :HSDHZ .

Now suppose 9X satisfies condition Z(g). If there are n — g strictly positive
eigenvalues, then every multi-index C must contain some ¢ with 2 > 0. On
the other hand if there are g + 1 strictly negative eigenvalues, then every
multi-index C of length ¢ must omit some e with 2¢ < 0. In either case

> - S >0,

neg
eec e¢C

Therefore the term on the left is > p|¢[* for some 7 > 0. Then taking the
neighborhood so small that we can cancel the e[¢[* term we have for all ¢ with
n*p = 0 on 9X the estimate
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lof <10l + IFEIF + llelP

uniformly for all x in a neighborhood of zero. This proves the uniform Morrey
estimate.

2. The Nash-Moser theorem for nonlinear exact sequences

2.1. Near-projections. We assume the reader is familiar with {2]. A Nash-
Moser interation algorithm is based on a near-projection. Let E be a graded
Fréchet space which we always assume to admit smoothing operators, and let
U be an open set in E. A projection is a smooth tame map

P.UCE-UCE with PoP=P.
The fixed point set .# (P) is defined as
FP)={xeU: Px)=x}.
For simplicity suppose U is convex. Define a smooth tame map
A:(UCE)XEXE—E,
A@@,w) = [ DPx + dPG) — Do, w) di .

Note that A(x)(v, w) is bilinear in ¥ and w. By Taylor’s formula with integral
. remainder we have

P(P(x)) = P(x) + DP(x)(P(x) — x) + A®)P(x) — x, P(x) — x) .
If P is a projection, then P(P(x)) = P(x) and
DP(x)(P(x) — x) + Ax)(P(x) — x,P(x) — x) =0..

This motivates the following definition: Let G: U C E — E. We say that G
is a near-projection if there exists a smooth tame map A: (UC E) X E X E
— E with A(x)(v, w) bilinear in v and w such that

DGH(G() — x) + ADGE — x,G) —x) =0 .

. Thus every projection is a near-projection. Note that A4 represents a quadratic
error. ‘
Given a near projection G with fixed point set

FG) =1{xecU: G = x

we would like to find a true projection P with the same fixed point set. The
classical way to do this would be by iteration
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P=GoGoGo--:

However for Féchet spaces this may not converge due to the “loss of deriva-
tives”’. Therefore we modify the iteration by inserting smoothing operators.
We set up the following algorithm. Choose starting values x, ¢ U C E and real
tg 2 3.

Algorithm: . ¢,,, = #7,
xn+l = [I - S(tn)]xn + S(tn)G(xn) .
Thus x,,, is a weighted average between x, and G(x,) which tends rapidly

towards the G(x,,) side as n — oo. Note that if x, ¢ #(G), then x,, = x, for all
nso x, = lim x, = x,.

Of course in general the x, may not all be defined, and even if they are
they may not converge. However if they are all defined and do converge we say

P(x) = x,, = limx, .

-0

This defines a map P on some set including #(G).

Theorem. We can find an open sei V containing ¥ (G) such that P is
defined on all of V, P maps V into itself, and P is a projection with the same
fixed point set as G, i.e., F(P) = F(G). Moreover P is a smooth tame map
P.VCE—->VCE. '

It suffices to prove the theorem in a neighborhood of each point in F(G);
therefore we may assume U is convex. We can rewrite the algorithm as

Xnor =X, + dx, , dx, = St)2, s Z, = G(x,) —'x, .

Here z, represents the error, and 4x, the correction. We can derive a recur-
sion relation for z,. Define a map

0:(UCE)X USE)XEXE—E,
0@ w) = [ DG = 0x + ), w)dr .

Then by Taylor’s formula we have ;

GO) = G + DGR — ) + Ox NG — %,y — %) .
Moreover @(x, y)(v, w) is a smooth tame map and is bilinéar in v and w. Also
G(xn.) = G(xz) + DG(x)Ax, + P(Xy, Xy )Xy, Axy)

Then
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Zpy1 = G(xn+1.) — Xni1
= G(x,) — x, — 4dx, + DG(x,)z, — DG(x )T — S(t,)]z,
+ O(xys Xy, )Xy, Ax,) -

Then, since
DG(xn)(G(xn) - xn) + A(xn)(G(xn) - xns G(xn) - xn) = 0 ]
we have

1 = [I - DG(xn)][I - S(tn)]zn
- A(xn)(zm zn) + Q(xn’ xn+1)(S(tn)z7n S(tn)zn) .

Thus z,,, is a sum of three terms; the first should. go to zero rapidly since:
I — S(z,) does; the second and third are quadratic in z, and should also go
to zero rapidly.

2.2. Low norm estimates. The following estimates will hold uniformly in
t, for all ¢, > 3. We shall use the following simple fact.

Lemma. If¢,> 3, then 2,7 t;' < 1. .

Proof. We have t, > 379" Now (3/2)" =1 + 1/2)">1 + n/2, so
o< 3-ara) < (ﬁ)—n/3. Then

= L _laf1y_1 1 1
e S??(V'_?) ST W e s M v ol

Pick a base point x, in the fixed point set &#(G). Then G(x,) = x;. Since
G, DG, A, @ are smooth tame maps, we can find § > 0 and numbers £, s such.
that for all x in the set

N = {x:||x = x| < 26}
we have the following estimates for all [ > k:
|G ;-s < C(|x] + 1),
HDG(x)le—s < Gl + lIxll 1o fe-s) »

1A Wlos < CUD I IWlins + [0 [W]l
+ Hxllllvle-s [wlie-s) 5

and if also ||y — x;||; < 26, then

182G, V@, W llies < CULNNWIe-s + [12]e-s 1w,
A xlvlle-s Wllees + APl l2 ks 1 Wlk-s) -

For simplicity we always take s > 2. We can deduce the following estimate.
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Lemma. [[G(x) — GO|i-s < Cllx — ¥l
Proof. We have '

G — G = j DG(tx + (1 — O)(x — Y)dt .

We apply the estimate for DG and integrate. Observe that if x,y e N, then
tx+ (1 —tyeNforO<t<1.
We will also have estimates on the smoothing operators; if I < m, then

1SOxl| < Cem=v*elxfl,
I — SOlx), < Ce7™ [ x i -

~ From now on we assume that x, ¢ N and ¢, > 3. C will denote various con-
stants independent of x, and #,. We suppose that some members x,, x;, - -+, X,
of the sequence can be defined and lie in N. As soon as some x,, falls outside
of N we terminate the algorithm. '

Lemma. Foralll >k

Nx, — x50l < CEI X — X3l -

Proof. When n = 0 this is trivial. We proceed by induction. Suppose we
can find a constant 4, so that whenever x, is defined we have

[Xr — xalle < AR 1| xg — x5, -
Suppose x, € N so that x,,, is defined. Then

%200 — x5 ]ls < HXn — X3l + [[4%5|l0 »

dxall = ISC)z. 1 < CE | zallios »

[Znlli-s = 1G(xa) — X, llizs »
<G — G llics + 1% — Xplhi—s

1G(x2) — G(xp)i-e < Clixn — x5

Thus

[Xne1 — x3lly < CAREE X0 — X5l
Then

Nxnir — X3l < Ap il 1% — X3l

provided CA,t% < A, %, ;.
Now t,,, = #/* and we took s > 2, so 51;3 = t,** < t;*. Thus we need

An+1 = CAnt;I .
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But #, — 0, so we can satisfy this with a sequence 4, — 0, uniformly for all
-ty > 3. Since 4, — 0 we have A, < C. This proves the Lemma.

~ Corollary. |[z,[;_s < C&|lxp — 23 |li-

Proof. We saw ”zn”l—s < C”xn _'-xb”I,'

Lemma. We can choose e > 0, 5 > O sufficiently small so that if t, > 3 and

lxo — X llesans < 7 5 1Gx) — Xolle—s < e,
then x, is defined and belongs to N for all n, and we have estimates
1G(xn) — Xplliee < et [dx, |l < 68, .

Proof. ‘We proceed by induction on n. Suppose that Xp» Xpp ¢+, X, are all
defined and belong to N, and that

”G(xn) - xn”k~—s _<_ Etrfl_zs .
This says ||z, |lx-, < et;**. Then

1454l = 1SEZalle < CE 2]l < Cet™ .

Thus || dx, ]I, < 0r; provided e > 0 is so small that Ce < §. Now if » is suf-
ficiently small, we will have

flxo — %501 £ 65

"~ and then
Nixner — Xolle < 1% — Xl + k);_-.; | dx;]l < 26,

(using 3 ;%% 'g 3. t;1 < 1). This shows that xnbﬂ'e N also and the algorithm
will continue.
Now recall the error recursion formula
Zpy = [I —_ DG(xn)][I - S(tn)]z'n
- A(xn)(zyu zn) + d?(xn, xn+1)(s(tn)z'm S(tn)zn) .

We can make the following estimates
10 — DG ~ SEzale-s < CIIU — SEall »

A Zas 2 s < Cl1Zali lZnllens >
¢(xm xn+l)(s(tn)zm S(tn)zn) “k—s < c Ils(tn)znllk “S(tn)zn”k—.s 4

since |[x, |l < C and ||x, |y, < C.
The A term is handled in this way. Write
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= [ — Stz — Sz,
Azalle < — SED1zalle + [1SE)zalle -
Then we use |[S(,)z, |l < CtZ [ za|le-s and |[znl|,c -s < C. Thus"
|| A(x:)as zn)”k s < CJT — S(tn)]zn”k + C [ Zp lfi-s
For the @ term we have | '
D Cens X0 S22, St)Z0) o5 < CE N[ 2Zalfis -
Thus all in all-
[Zniille-s < CIIT — S(t24lle + CE |l 2alfi-s -
Now
I = S@)lzalle < C ([ 2nllrass -
- By the previous corollary we have

|1zn||k+24s S Cti’f’ on - Xp {k+Zas ’:
(U — StI)zall < Ct"™ [ X0 — Xpllia2ss -

Using the induction hypothesis we obtain
'HZnH”k—s < C?t;ms + Cezt;ms <et’®,

provided ¢ is so- small that Ce < 1/2 and 3 is so small that Cyp < ¢/2. Then
In+1 - tiﬂ’ SO

[ Zasalle-s < etail .

‘This verifies the induction step and proves the Lemma.
2.3. High norm estimates.
Lemma. Suppose as before that t, >3 and
%0 = Xpllzsoss < 7 5 |G(xo) — Xollx-s < eyt
Then for every | > k we. have estimates:
%l < CQl%ollarse + 1) 5
x|, < Ct;&(“xo“st_ + 1,
IGxn) — Xulh-s < CHET([Xollivsss + 1)

Proof. We proceed by induction on #. Suppose that for 0 < j < n we have
estimates
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1Z5ll-s < A7 X0l + 1D

with an increasing sequence of constants 1 < A, < A4, < --- < A,. Then
we have

14,11, = 1152, 1 < CE |24l
“ij“l _<_ CAjt;M(“x(]“L+ms + 1) .

Since J ;% < ] t;' < 1, we have
2, 14%; 1l < CAw(| Xofleries + 1)
J= .

using the fact that the 4, are increasing. Then

1%nlly + [ Xnsille < CAR(IXollises + D -
Again we use the error recursion formula

Lpi1 = [I - DG(xn)][I - S(tn)]zn .
- A(xn)(z'm zn) + @(xn-a xn+1)(S(tn)zna S(tn)zn) .

Now we .claim that
HZnHHL—s g CAnt;uS(HXOHZHBs + 1) .

To show this we must show that e\}ery term in the estimate for z,., has this as
bound.
First

U — DG — Szl
S H[I - S(tn)]zn“l + Hanl HI - S(tn)znlék—-s .
We have

”[I - S(tn)]znnl S Ct;ms”ZnHst
_<_. Ct‘,:lestis”x - xb”l+183

< C¥(|[xoflpsmss +. 1)
since {|xy!];, s i @ constant C. Also

”xn“l “I - S(tn)]znflk—s S tha “xn”L ”Zn”k~s
S CAnt;us(HxO”Hms + 1) 3

since ||z, [[¢~; < Ct;** by the previous lemma.
Next '
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| AGDEa Z)ll—e < C Xl 2alies + Clzall izl -
Now | '
15l D 2alios < CAMH (o lharss + 1) -
For the second we use
I2all < 11 = StDT2all, + 1520l -

The term ||[I — S(t)12,111 112, llk-s is easier to bound than |[[I — S(1,)1z.|,
which we handled before. The term

Hs(tn)zn “l Hzn Hk—s S thzs ”zn Hl—s Ilzn ”k—s
S CAnt;Us(HxO”Hlas + 1)

using |12, ]l-s < 4.8 X% ]I, s + 1) Which is the induction hypothesis, and
”Zn”k—s S th:us'
Lastly we have

Hd)(xn, xn+1)(S(tn)z7n S(tn)zn)”L—s .
< CUSEIZall [SE)zalle-s + CUxLNL + [ Xn sl [SE)Za s -

Then

18Dz [l [ Sz s < CE |2 llios l| Zallis
S CAnt;ws(“xOHlﬂss + 1) s

and ||S(1)2,llk-s < CB || 2 lli s 5O
Uxalle + %041 1) 1SE)2Z0 - < CARt™ ([ Xollisres + 1) -
Thus all the terms Have been bounded as we claim and |
[Znsall < CARtZ (%o flisss + 1) -
Now ;' = t;%%;75. Thus
Znsillics < Aprite i Xollises + 1) s

provided A4,,,, > CA,t;**. But as soon as Ct;%* < 1 we can take A4,,, = 4,
(recall the 4, were to be increasing). Hence the sequence 4, is bounded, and

l2alli-s < CE™([Xollis1ss + 1)

The other.estimates follow from the first part of the argument. Let V) be the
set of all x, with
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xe — Xollovess <75 1Gxp) — Xgllpos < etg™ .

Define P(x,) = x,. Then P}, is a smooth tame map P): V} C E — E. For we
have seen that if x, e V9 then x, is defined for ail n, and from the algorithm
it is clear that x,,, is a smooth tame function of x,. Moreover

©

142y < CQixle + 1) -

n=

Therefore, if x, € V9, the sequence x, must converge to an element x,, ¢ E, and

H‘xn”L S C(H‘x0HL+188 + 1) s

SO

lx.ll < Clxoll41ss + 1) .

We write P%(x,) = x,,.  Then P’ is a map P%: V) C E — E. By the above
estimate we see that P° is tame. Moreover

1G(xa) — Xallios < CET(1Xoll1008s + 1)

Therefore in the limit G(x..) = x..,. Hence Im P}, C #(G). Also if x, ¢ V3 N
F(G), then x, = x, for all n, so x., = x, or P%(x,) = x,. Hence #(P%) =
FG) NV

Lemma. P :V°C E — E is continuous.

Proof. We have P’ — }gg P:, and the PY are surely continuous. More-

over since

% 4%l < Cliolioms + 1) 5

we see that the convergence is uniform on every bounded set of x, and hence
on every compact set of x,. Therefore the P} — P?, uniformly on compact sets.
But V) C E, and E is a Fréchet space and therefore metrizable. Thus V9 is a
k-space (see Kelley [4, p. 231]), so P!, is continuous.

We can also-let V7 be the set of all x,, such that

me - xb“k+zss < 7 a. HG(xm) - xm”k—s < Et;nlzs .

If x, € V7, then by the same argument X, - - -, X,, + + - are all defined and
we have the same sort of estimates, so again x, — x.,. Let us.write (for m < n)

Xp = P;zn(xm) .

Then P*: Vi 'g E — E is a smooth tame map, and P? = lim P exists in the

N— o
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sense of uniform cbnvergence on compaét sets, and P*: Vr C E—E is a
continuous tame map. Moreover, if x,¢ V3 and x, = P%(x,) € V¥, then for
all # > m we have

P;L"(xm) - xn = sz(xo) Fl
and hence in the limit
PX(x,) = x., = PL(x,) .

Therefore P}, = P*P?, (at least where the composition is defined).

2.4. More rapid convergence. If we are willing to involve arbitrarily high
norms of x,, we can make x, — x., as fast as any power of the #,. Let C(x,)
denote a constant which may depend on x,.

Lemma. For any ¢ we have

Nizelle-s < Clxlty*

Proof. We proceed by induction on c. We already know the lemma holds
for ¢ = 12s. Suppose that for some c¢ the estimate
. HZnHk—s < C(xﬂ)’;c H

holds for all #. In the earlier argument we saw that
|zaarlleos < CIU — SEIza e + CE IZales -
Now

I — SEzalle < CL*7* 20 llos2043s
< CHP Xy — Xpllerzerss < Cxtr 2™,

using |z, s+ zerse < Ct7% l1xq — X3l 120440 @ Was seen in an early lemma. Also
using the induction hypothesis .

)zl < Clxpty % .
Theréfore
1Zpi1lleos < Clxdtr®*® < Clx)t i,

proi}ided that 2(—2¢ 4 3s) < 3(—c — s) which holds if ¢ > 9s. But we start
from ¢ = 12s. Therefore we conclude that '

(zalles < Clxdtre®

for all » > 1. However it clearly holds also for n = 0, i.e., [|Z]ls—s < C(xy).
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Therefore, if the lemma holds for c, it also holds for ¢ + 5. By 1nduct10n (in
steps of s) it holds for all c. :
Lemma. For every | and every c

12l < CGOE7 .

-Proof.. We estimate ||z,,_, as before from the error recursion formula.
We consider one at-a time the terms which arose. The first was

I — S(t)1z. . < Ct777% ([ 2y 1120400 < CODE™

since n z,,IIHZHN < CE||xy — x,,|]L+2c+7s by a prev1ous lemma. The next term
‘was

8.0l 1 Zallese < CEILE

since ||z, lo_s g C(xt;%"™ by the previous lemma and

%, — %l < C&x — %l so [ x,]l, = Clxy) .
" 'We can deal with all the remaining terms in a siinilar féshion. They are:

l%alle i Zalli-s »
Gl Zalli-s 24l s
» i lzalli=s [ Zalle-s 5
L%l + 1%l 120l -

In each case ||x, [, < COWE, [1Zallis < CODES, 1%, 1/l < CEIES; < Clxo)e
cand |z, ]],Z. < Clx)t; 2™ (or any power of ¢,), so surely each term above is
bounded by C(x,)¢t;%. Thus

||Zn+1HL : < C(xo)t’zc < C(xo)t,,+1 .

This proves ||z,[,_s < C(x)t;¢ for all n > 1, but again it is tr1v1a1 for n = 0.
Thus the lemma holds. : :
Corollary. For everyl and every ¢

|4zl < CEIGET L 1% — %l < CEIG

Proof. ||4x,[, < CE || znllizs and {|x, — x.lly < D50 14Xl
- 2.5. Derivatives of the projection. We now wish to show that on the entire
set V9 the map P is smooth and all its derivatives are continuous and tame.
'We begin by showing that this is true in a neighborhood of any fixed point.
Instead of working with derivatives it is convenient to work with tangent
functors. Recall that if F: U C E — G, then the tangent of F is the map
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TF.:. (UCE)XE—-GxG,
TF(x,v) = (F(x), DF(x)v) .

The second tangent T°F is the tangent of the tangent of F; i.e.,
TF = TUD(UCBxExExEﬁGxGxGxG
T*F(x,v,w, z) = (F(x), DF(x)v, DF(x)w, DF(x)z 4 D*F(x)(v, w)) .
Similarly the kth tangent T*F is defined as T*F = T(T*~'F). It is a map
T"F:(USE)YXEXEX - XE->GXGXGX -+ XG.

If the function F and its derivatives up to D*F are continuous and tame, then
T*F will be continuous and tame. Conversely, if T*F is continuous and tame,
then so will be F and its derivatives up to D*F, since we can solve for the
DJF (0 < j < k) in terms of the components of T*F.

More precisely, let x, ¢ U, and suppose T*F(x,v,w, .- -,2) is continuous
. and tame in a neighborhood of

jﬂ - (XU’O;O’ <. >O) )
say of the form (¢ > 0)
“x—x0|[l<5a H/UHZ<5’ “le<5; ) HZH<E

Then each D/F(x)(v,w, - -+, z) will be continuous and tame in a similar but
possibly smaller neighborhood (say ¢ > 0). However D/F(x)(v,w, -+ ., 2) is
multilinear in v, w, - - -, z. From this it follows that D’F(x)(v,w, -+ +, 2) is con-
tinuous and tame on the set {|x — x|, < ¢ for all v, w,.. - -, z without restric-
tion. Then the same will be true for T*F(x, v, w, « « -, 2).

The advantage of tangent functors is that they smphfy the statement of the
chain rule. Namely we have

T(F,oF,) = TF;-TF,,
and more generally
T¥(F,oF,) = T*F,o T*F, .

Now consider a near-projection G: U C E — E. Recall that this means that
G is a smooth tame map, and we can find a smooth tame map

4:(UCE)yXxEXE—E
such that A(x)(v, w) is bilinear in v and w, with

DG()(G(x) — ») 4+ ADGE) — x,Gx) —x) =0.
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Lemma. IfG:U gE — E is a near-projection, then so is
_TG:(UgE)xE——__»ExE.

Proof. Temporarily we write a tangent vector as (f}) instead of (x, v).
We define

(f,)(: ’ L;> N (f)(sz:(c;v(vl)?w W+ ADW,) + 4D u))' "

Clearly v is a smooth tame map and is bilinear in (‘;) and ( ; ) Now

76(2) = (5%,)
| DTG(:))(:) - (gZGG(ZCJg;zw,v) + DG(x)u;) >

16(2) = (2) = (oo™ o)

pr6(;)(r6(3) = (5)) = 2703 ) o = o)

- _ (BewEe - )

D*G(x)(G(x) — x,v) + DG(x)(DG(x)v—72)
If we differeﬁtiate the identity ’

DGE(GH) — %) + AHGE) — x,G(x) — ) =0,
we have ' |
D*G(x)(G(x) — x,v) + DGX)YDG(x)v — v) + D_A(J.c)('v)(G(x) —x,G(x) — x)
' + AXDGEWw — v, Gx) — x) + A)(G(x) — x, D.G(x)_'v —)=0.
“Therefore E ' | |
o)) -()

#()(re(3) - (5)- 7o(5) - (5)) =0
This proves that TG is also a near-projection. |

Corollary. For all k, T*G is a near-projection.’
Next consider the algorithm for G:
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xn+l = [I - S(tn)]xn + S(tn)G(xn) .

We may define smoothing operators on E X E by the obvious formula

S(t)<x> — (S(t)x) )
v Sty
“Then the algorithm for TG is

("w) =~ S(tn)](j:) + S(zn)TG(z:) .

Vpsi

Then, if x, = Pl(x,), we will have
()-rrl)
VU, Yy

Hence the approximate projections for the algbrithm of TG are just the tangents
TP of the approximate projections P for the algorithm of G. Now if x, is a

fixed point for G, then (%”) is surely a fixed point for TG. Therefore TP, will

 converge (uniformly on compact sets) in a neighborhood of (%b) to a con-

tinuous tame map which is clearly TP by the next lemma.

Lemma. If F, is a sequence of continuously differentiable maps, and if
F, — F and DF, — G uniformly on compact sets, then F is continuously dif-
_eretiable and DF = G.

Proof. By the fundamental theorem of calculus

F(x + dx) — F(x) = _[ ' DF,(x + tdx)dxdt .
=0

Since F, — F and DF, — G uniformly on the compact set {x >+ tdx: 0 <1, < 1}
we surely have :

o .
F(x + %) — F(x) = _[ Glx + 14%) dxdt .

t=0 .
Now DF ,(x)dx is linear in Adx, so G(x)4x must be also. Then

-}11—{F(x + hdx) — F()} = _[ 1_'0 Glx + thax)dx dt .

Since G is continuous (being a uniform limit on compact sets of a sequence of
continuous functions on a metrizable space) we have
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lim _%{F(x + hdx) — F()} = G0 dx .
h—0 .

" Thus F is continuously differentiable, and DF ()dx = G(x)dx as clai_med.
Returning to the argument, we see that TP? exists and is continuous and

tame, at least in a neighborhood of <)8’) Then by our previous reasoning the

same is true for all <f;) with x in a neighborhood {|x — x,|; < ¢ and v unre-

stricted. Exactly the same argument applies to each T*P%. We would be done,
except that the neighborhood may shrink to a point as & — e, and we need
- to show that all the T*P?,-are continuous and tame on some fixed neighborhood
* of x,. This follows by a slightly more complicated reasoning.

Lemma. T*PL(x,v,w, ---,2) is continuous and tame ;for all x e V3 and all
v, W, -+, 2 Without restriction.

Proof. By our previous argument, it is enough to show that T*PY, is con-
tinuous and tame in a neighborhood of (x,, 0,0, -..,0) for each x, ¢ V3. Fix
such an x,, and let x., = P%(x,). Then x., is a fixed point of G. Now we apply
our previous reasoning, not to G near x,, but to T*G near x.,. 1t follows that
we can find numbers % and 5 and z > 0, 7 > 0 such that if P is the set

1 Xm — Xoollesoss <7,

||vaE+25§ < 77’ cT H.Z_7n|]I?+25§ < 77 »
'“TkG(xm’ Vms ** > Zm) - (xm’ Vms. "0 Zm)”ﬁ—i < a~t1—n12§ s
then the maps T*PX areall defined for (x,,V,, -, 2,) € V™ and converge

(uniformly on compact sets) as # — oo to a continuous tame map which must
be T*P™. Thus P and its derivatives of order up to k exist and are contlnuous
and tame on the set 7™, Now

Ko = PO, (40,0, <+ 0) = T*PY(x,, 0, - - -, 0)
and we have seen that for all / and c |
| 1G0e) = xnll = l2al < €3
Since T*G(t, 0, - ++,0) = (G(xn); 0, - -+, 0), for all | and ¢ we have
| TG Ov, Ce -,Oj — Xy 0, -, O, < ct;e,
~and therefore (x,,,0,--+,0) 'e_f/ﬁ when m is sufﬁciently large. T_hen T ?‘Pi’:
exists and is a continuous tame map in a neighborhood of (x,, 0, - - -, 0). Also

we surely know- that T*P?, exists and is a continuous tame map in-a neigh-
_borhood of (x,, 0, -~ -, 0). Since :
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P = PP,
it follows that 7*P% exists in a ﬁeighborhood of (x,,0,---,0) and
. | | TP, = T*P™-T*P), . |

But a composition of .continuous tame maps is a continuous tame map. Thus
T*P? is a continuous tame map in a neighborhood of (x,, 0, - - -, 0) for any
X, € V3. As we observed before, this implies that P?, is a smooth tame map on
V4. This proves the theorem in § 1.

2.6. Nonlinear exact sequences. We are now in a position to prove the
Nash-Moser theorem for nonlinear exact sequences. Let E, F, G be graded
Fréchet spaces which admit smoothing operators. Let UCE, VCF, WC G
be three open sets, and let P and Q be two smooth tame maps

P o
UCE—VCF-S5S5WCG
such that the composition QP = 0.
Theorem. Suppose we can find two Smooth tame maps

VP.(UCE)YXxF—->E,
VQ.(UCE)yYx G- F,
such that VP(x)v-and VQ(x)w are linear in v and w for each x, with
DP(x))VP(x)v + VQ(x)DQ(Px)v = v

for all xe U and all veF. Then for aﬁy x,€ U we can find a smooth tame
map . ' : ‘

S VCF-UCE
bn some (possibly smaller) neighborhood V' of Px, in F such that
PSy =y ‘whenever Oy=20.

1t follows that Im P = Ker Q, at least in a neighborhood of Px,, i.e.,
ImP N V' =KerQ (1 V. Also let

"={yeV';PSyeV’}.

Then V" is also an open neighborhood of Px,, and PS: V"' — V"’ is a smooth
tame projection onto ImP N V" = Ker Q N V. We .make the following
definition.

Definition. 4 set X C E is a local smooth tame retract if for every x e X
we can find an open neighborhood ¥ of x and a smooth. tame projection
7:V > Vwithror =randImz=XN V.
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Corollary. - Under the above hypotheses Im P is a local smooth tame retract.

Observe that in the category of Banach spaces every local smooth retract is
a submanifold. We have been unable to show that Im P is a submanifold ; in
fact there is reason to doubt it in general. We hope that the notion of a local
smooth tame retract will be an adequate substitute. For example, a local smooth
tame retract has a well-defined “tangent bundle” ; namely if locally X = Im z,
where # is a projection, then T’z is also a projection and we put 7X = Im 7.
It is not hard to see that TX C E X E is independent of the choice of ». Also
TX is again a local smooth tame retract in £ X E.

Before we prove the theorem we make the following observation.

Lemma. = We may assume

VP(X)VQO(x)w = 0

forall xe Uand we G.
Proof. We know that

- DP(x)VP(x) + VQ(x)DQ(Px) =1,

and that DQ(Px)DP(x) =0 since QP = 0. Then DQ(Px)VQ(x)DQ(Px) =

© . DQ(Px) and DP(x)VP(x)DP(x) DP(x) Therefore

I =IDP(x)VP(x) + VQ@DAPX)) = I + DPVPOVAX)DO(Px) ,

or DP(x)VP(x)VQ(x)DQ(Px) = 0. Now we may replace VP and VQ by two
other smooth tame maps '

VP(x)v = VP@DPXVPxv , V0w = VO®DQP)VOXW .
We then have again |
DP(x)VP(x)v + VO@DOPw = v
and now also
V?(x)i/“Q(x) =0.
Corollary. We have '

DP(x)VP(x) =T onIm DP(x) ,
VP(x)DP(x) =1 onImVP(x) ,
DOPx)VQ(x) =1 on Im DQ(Px) ,
YOxDOPx) =1  onlm VQ(X) .

Proof of the Theorem. We set up the following algorithm. Let
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' .>F:_U-><_V><_W;C_E'><F><G-_>E.><F>'<G

B x\ . [x — VPXx)(Px —y)
F(y) = (y — VQ@®)Qy ) .
z 2 — DQ(PX)(Px — )

be defined by

Lemma. [ isa near-projection.
Proof. Let

| dx = VP(x)(Px -y,
dy = VQWQy ,
Az = DQ(Px)(Px — y) .

~ 'We must show that there exists a.smooth tame map &, bllmear in the last two
arguments, such that

{4 M

First observe that _
Px — y = DP(x)dx + VO®)z .
Hence any expr_ession which is bilinear in |
| Ax, 4y, 4z, Px — y
has the requited:form. Now we have
00) = QW) + DO — w) + Bw, Y& — W,y — W)

" from Taylor’s formula with integral remainder, where
1 ) o
D00, ) 0) = [ Do — ow + v)w, vya

is a smooth tame map bilinear in u and v. Apply this with w = Px and we
have
o) = DQ(Px)(y — Px) + @(Px MO — Px,y — Px) .

Hence Q(y) + 4z = - O(Px, y)(y — Px,y — Px) has the form of an. admissible
quadratic error..
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)

4x — VPx)(DP(®)4x — 4y) — DVP(x)(dx, Px — 3)
(Ay — VO@x)DQO)dy — DVQO(x)(4dx, Qy)
Az — DO(PxY(DP(x)4x — Ay) — D*Q(Px)}DP(x)4x, Px — y)

Now DVP(x)(dx, Px — y) and DZQ(Px)(DP(x)Ax,‘Px — y) are admissible
quadratic errors. Since Qy differs from 4z by an admissible quadratic error,
the term DV Q(x)(dx, Qy) is also an admissible quadratic error. For the other
terms, we see that

'Ax = VP(x)DP(x)Ax

since Ax e ImVP(x) and VP(x)dy = VP(x)VQ(x)Qy =0 because we may
assume VP(x)VO(x) = 0. Also ,

4y — VQx)DQO(Px)dy =0,
since 4y € Im V' Q(x). This leaves a term

VOX)IDO) — DQ(Px)14y .

However

=0

= @(Px,y)(y — Px, v) ,

[DQ®) — DOPD)Iv = j DOl — )y + tPx)(y — Px, v)dt

where (D 1s a smooth tame map. Therefore

[DQO) — DO(Px)1dy = D(Px, y)(y — Px, 4y)

is an admissible quadratic error.
Also DQ(Px)DP(x)Ax = 0. The last remalmng term is

4z 4+ DQ(Px)dy .
Now we have already seen that

0O + 4z

it an admissible quadratic error. Since 4y = VQ(x)Qy it follows that '
dy + VQ(x)4z

is an admissible quadratic error. Therefore we are left with .
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4z — DQ(Px)VQ(x)dz = 0,

since 4z € Im DQ(Px). This proves that I” is a near-projection.
It follows from the theorem in §1 that on a neighborhood U’ X V'’ x W’
of (0,0, Q) the algorithm

xn+1 xn xn
Zns1 ) 2y Zn

converges to a smooth tame projection =. Write

x S(x,y,2)
ﬂ:()’) = (T(x,y,z)) .
b4 Ulx,y,2)

and let S(y) = S(0,y,0). Then S: V' C F — U C E is a smooth tame map
(on a sufficiently small neighborhood ¥’ of 0).

Lemma. LetyeV’'. Then PSy = yif Qy = 0.

Proof. We know that

Xo X Xp
zl v | =1|y.|=1lm|y,|.
)  \z. "\ 2,

Now suppose @y, = 0. Then .

4y, = VQ(xpQy, =0,
i =l — S@)ly, + S@)y, — 4y = ¥, -

By induction we see that y, = y, for all n, so y,, = ¥,. We also know that

Xn Xn
F(yn) - (yn)—_’oa :
2y Zp

s0 4x, — 0, 4y, — 0, 4z, — 0. Then
Px, — Yu = DP(x,)dx, + VQ(x,)4z, —> 0,
so Px, = y.. Now put x, = 0 and z, = 0, with Qy, = 0 as above. Then
x. =800, y,,0) = SQ&»,) , PS(yy)) =Px, =y, =1y,.

Thus PS(y,) = y, if y,¢ V’ and Qy, = 0. This proves the lemma and hence
also the theorem.
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